Liquidity Oracle System
1. System Overview
The liquidity oracle system is a decentralized oracle system implemented in Solidity, designed to provide accurate, real-time liquidity data. The system ensures data reliability and security through multi-source data aggregation and validation mechanisms.
1.1 Main Features
- Multi-source Data: Support for multiple data sources
- Data Aggregation: Smart aggregation algorithms
- Real-time Updates: Timely data updates
- Anomaly Detection: Data anomaly identification
- Security Protection: Comprehensive security mechanisms
1.2 System Architecture
- Data Layer: Data storage and management
- Aggregation Layer: Data validation and aggregation
- Interface Layer: External access interfaces
- Security Layer: Permission and protection mechanisms
- Monitoring Layer: System status monitoring
1.3 Core Functions
- Data Source Management: Add, remove, update
- Data Validation: Format, range, timeliness
- Data Aggregation: Weighted average, median
- Anomaly Handling: Detection, reporting, recovery
- Access Control: Permissions, rate limiting, auditing
2. Contract Implementation
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
/**
* @title LiquidityOracle
* @dev Liquidity oracle contract
*/
contract LiquidityOracle is Ownable, ReentrancyGuard {
using SafeMath for uint256;
// Data source information
struct DataSource {
string name; // Data source name
bool isActive; // Whether active
uint256 weight; // Weight
uint256 updateCount; // Update count
uint256 lastUpdate; // Last update time
}
// Liquidity data
struct LiquidityData {
uint256 price; // Price
uint256 volume; // Trading volume
uint256 liquidity; // Liquidity
uint256 timestamp; // Timestamp
address reporter; // Reporter
}
// State variables
mapping(address => DataSource) public dataSources; // Data source mapping
mapping(address => LiquidityData) public liquidityData; // Liquidity data
address[] public dataSourceList; // Data source list
uint256 public minReports; // Minimum reports
uint256 public maxDeviation; // Maximum deviation
uint256 public updateInterval; // Update interval
uint256 public lastAggregation; // Last aggregation time
LiquidityData public aggregatedData; // Aggregated data
// Events
event DataSourceAdded(address indexed source, string name);
event DataSourceRemoved(address indexed source);
event DataReported(address indexed source, uint256 price, uint256 volume);
event DataAggregated(uint256 price, uint256 volume, uint256 liquidity);
event AnomalyDetected(address indexed source, string reason);
/**
* @dev Constructor
*/
constructor(
uint256 _minReports,
uint256 _maxDeviation,
uint256 _updateInterval
) {
require(_minReports > 0, "Invalid min reports");
require(_maxDeviation > 0, "Invalid max deviation");
require(_updateInterval > 0, "Invalid update interval");
minReports = _minReports;
maxDeviation = _maxDeviation;
updateInterval = _updateInterval;
}
/**
* @dev Add data source
*/
function addDataSource(
address source,
string memory name,
uint256 weight
) external onlyOwner {
require(source != address(0), "Invalid source");
require(weight > 0, "Invalid weight");
require(!dataSources[source].isActive, "Source exists");
dataSources[source] = DataSource({
name: name,
isActive: true,
weight: weight,
updateCount: 0,
lastUpdate: 0
});
dataSourceList.push(source);
emit DataSourceAdded(source, name);
}
/**
* @dev Remove data source
*/
function removeDataSource(address source) external onlyOwner {
require(dataSources[source].isActive, "Source not exists");
dataSources[source].isActive = false;
// Update data source list
for (uint256 i = 0; i < dataSourceList.length; i++) {
if (dataSourceList[i] == source) {
dataSourceList[i] = dataSourceList[dataSourceList.length - 1];
dataSourceList.pop();
break;
}
}
emit DataSourceRemoved(source);
}
/**
* @dev Report liquidity data
*/
function reportData(
uint256 price,
uint256 volume,
uint256 liquidity
) external nonReentrant {
require(dataSources[msg.sender].isActive, "Not authorized");
require(
block.timestamp >= dataSources[msg.sender].lastUpdate.add(updateInterval),
"Too frequent"
);
// Check for data anomalies
if (aggregatedData.timestamp > 0) {
uint256 priceDeviation = calculateDeviation(price, aggregatedData.price);
uint256 volumeDeviation = calculateDeviation(volume, aggregatedData.volume);
if (priceDeviation > maxDeviation || volumeDeviation > maxDeviation) {
emit AnomalyDetected(msg.sender, "High deviation");
return;
}
}
// Update data
liquidityData[msg.sender] = LiquidityData({
price: price,
volume: volume,
liquidity: liquidity,
timestamp: block.timestamp,
reporter: msg.sender
});
// Update data source status
DataSource storage source = dataSources[msg.sender];
source.updateCount = source.updateCount.add(1);
source.lastUpdate = block.timestamp;
emit DataReported(msg.sender, price, volume);
// Try to aggregate data
if (canAggregate()) {
aggregateData();
}
}
/**
* @dev Calculate deviation
*/
function calculateDeviation(uint256 a, uint256 b) internal pure returns (uint256) {
if (a > b) {
return a.sub(b).mul(100).div(b);
}
return b.sub(a).mul(100).div(b);
}
/**
* @dev Check if aggregation is possible
*/
function canAggregate() public view returns (bool) {
if (block.timestamp < lastAggregation.add(updateInterval)) {
return false;
}
uint256 validReports = 0;
for (uint256 i = 0; i < dataSourceList.length; i++) {
address source = dataSourceList[i];
if (dataSources[source].isActive &&
liquidityData[source].timestamp.add(updateInterval) >= block.timestamp) {
validReports++;
}
}
return validReports >= minReports;
}
/**
* @dev Aggregate data
*/
function aggregateData() public {
require(canAggregate(), "Cannot aggregate");
uint256 totalWeight = 0;
uint256 weightedPrice = 0;
uint256 weightedVolume = 0;
uint256 weightedLiquidity = 0;
for (uint256 i = 0; i < dataSourceList.length; i++) {
address source = dataSourceList[i];
DataSource storage ds = dataSources[source];
if (ds.isActive &&
liquidityData[source].timestamp.add(updateInterval) >= block.timestamp) {
uint256 weight = ds.weight;
LiquidityData storage data = liquidityData[source];
weightedPrice = weightedPrice.add(data.price.mul(weight));
weightedVolume = weightedVolume.add(data.volume.mul(weight));
weightedLiquidity = weightedLiquidity.add(data.liquidity.mul(weight));
totalWeight = totalWeight.add(weight);
}
}
require(totalWeight > 0, "No valid data");
// Calculate weighted averages
aggregatedData = LiquidityData({
price: weightedPrice.div(totalWeight),
volume: weightedVolume.div(totalWeight),
liquidity: weightedLiquidity.div(totalWeight),
timestamp: block.timestamp,
reporter: address(this)
});
lastAggregation = block.timestamp;
emit DataAggregated(
aggregatedData.price,
aggregatedData.volume,
aggregatedData.liquidity
);
}
/**
* @dev Get latest aggregated data
*/
function getLatestData() external view returns (
uint256 price,
uint256 volume,
uint256 liquidity,
uint256 timestamp
) {
require(aggregatedData.timestamp > 0, "No data available");
return (
aggregatedData.price,
aggregatedData.volume,
aggregatedData.liquidity,
aggregatedData.timestamp
);
}
/**
* @dev Get data source information
*/
function getDataSource(address source) external view returns (
string memory name,
bool isActive,
uint256 weight,
uint256 updateCount,
uint256 lastUpdate
) {
DataSource storage ds = dataSources[source];
return (
ds.name,
ds.isActive,
ds.weight,
ds.updateCount,
ds.lastUpdate
);
}
/**
* @dev Update system parameters
*/
function updateParameters(
uint256 _minReports,
uint256 _maxDeviation,
uint256 _updateInterval
) external onlyOwner {
require(_minReports > 0, "Invalid min reports");
require(_maxDeviation > 0, "Invalid max deviation");
require(_updateInterval > 0, "Invalid update interval");
minReports = _minReports;
maxDeviation = _maxDeviation;
updateInterval = _updateInterval;
}
}
3. Core Concepts
3.1 Data Source Management
- Source Registration
- Weight Assignment
- Activity Status
- Update Frequency
- Performance Tracking
3.2 Data Validation
- Format Verification
- Range Checking
- Timestamp Validation
- Anomaly Detection
- Source Reliability
3.3 Data Aggregation
- Weighted Average
- Deviation Calculation
- Update Frequency
- Minimum Reports
- Data Quality
3.4 Security Measures
- Access Control
- Rate Limiting
- Data Validation
- Error Handling
- Event Logging
4. Best Practices
4.1 Implementation
- Use standard libraries
- Implement safeguards
- Follow patterns
- Document thoroughly
- Test extensively
4.2 Operation
- Monitor data sources
- Track performance
- Handle anomalies
- Update parameters
- Maintain security
4.3 Integration
- Standard interfaces
- Error handling
- Event monitoring
- State synchronization
- Performance optimization
5. FAQ
5.1 Basic Concepts
Q: What is a liquidity oracle? A: A liquidity oracle is a system that:
- Provides real-time liquidity data
- Aggregates multiple data sources
- Ensures data reliability
- Handles anomalies
- Maintains security
Q: How does data aggregation work? A: Data aggregation involves:
- Collecting data from sources
- Validating data quality
- Calculating weighted averages
- Detecting anomalies
- Updating aggregated data
5.2 Security
Q: How to ensure data reliability? A: Reliability measures include:
- Multi-source validation
- Deviation checks
- Update frequency limits
- Weight assignments
- Anomaly detection
Q: How to prevent manipulation? A: Protection measures include:
- Source verification
- Deviation thresholds
- Update intervals
- Weight adjustments
- Activity monitoring
5.3 Implementation
Q: How to implement a data source? A: Implementation steps:
- Interface compliance
- Data validation
- Error handling
- Event emission
- Performance optimization
Q: How to handle data anomalies? A: Anomaly handling includes:
- Detection mechanisms
- Alert systems
- Recovery procedures
- Source evaluation
- Parameter adjustment
5.4 Optimization
Q: How to optimize performance? A: Optimization strategies:
- Gas efficiency
- Data structure optimization
- Computation reduction
- Cache utilization
- Event optimization
Q: How to improve reliability? A: Improvement measures:
- Source diversification
- Validation enhancement
- Parameter tuning
- Monitoring improvement
- Security updates
6. Summary
The liquidity oracle system provides:
- Reliable liquidity data
- Multi-source aggregation
- Real-time updates
- Security protection
- Easy integration
Through careful design and implementation, the system ensures:
- Data accuracy
- System reliability
- Operational efficiency
- Security measures
- User satisfaction
</rewritten_file>